CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A shell element formulation for the simulation of propagating delamination and through-thickness cracks

Jim Brouzoulis (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Martin Fagerström (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Erik Svenning (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
Proceedings of 16th European Conference on Composite Materials - ECCM16 p. (8p). (2014)
[Konferensbidrag, refereegranskat]

In this contribution, we propose an enhanced shell element formulation for mesh independent FE simulation of through-thickness and multiple delamination crackp ropagation in orthotropic laminates, cf. Figure 1 for an illustration of the possibilities of using this shell element (multiple delaminations). The ambition is to offer a finite element tool to be used for larger component simulations, without having to resort to explicit resolution of each laminae in the laminated structure by three dimensional solid elements or stacked shell elements. The formulation involves three different types of displacement enrichments to make sure that each delaminated subsection which is also cut by a through thickness crack can be individually represented without (unphysical) kinematical couplings to the surrounding structure in the laminate. So far, the proposed modelling framework has been validated against pure deformation modes, in terms of either multiple delaminations or a through-thickness crack.

Nyckelord: Multiple delaminations; Shell elements; Through-thickness cracks; XFEM



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-12-05. Senast ändrad 2016-03-22.
CPL Pubid: 207447

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)



Projekt

Denna publikation är ett resultat av följande projekt:


Modelling And Testing for Improved Safety of key composite StructurEs in alternatively powered vehicles (MATISSE) (EC/FP7/314182)