CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Gaussian process quadratures in nonlinear sigma-point filtering and smoothing

S. Särkkä ; J. Hartikainen ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; F. Sandblom
17th International Conference on Information Fusion, FUSION 2014; Salamanca; Spain; 7 July 2014 through 10 July 2014 (2014)
[Konferensbidrag, refereegranskat]

This paper is concerned with the use of Gaussian process regression based quadrature rules in the context of sigma-point-based nonlinear Kalman filtering and smoothing. We show how Gaussian process (i.e., Bayesian or Bayes-Hermite) quadratures can be used for numerical solving of the Gaussian integrals arising in the filters and smoothers. An interesting additional result is that with suitable selections of Hermite polynomial covariance functions the Gaussian process quadratures can be reduced to unscented transforms, spherical cubature rules, and to Gauss-Hermite rules previously proposed for approximate nonlinear Kalman filter and smoothing. Finally, the performance of the Gaussian process quadratures in this context is evaluated with numerical simulations.



Denna post skapades 2014-12-05. Senast ändrad 2016-07-21.
CPL Pubid: 207444

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling

Ämnesområden

Elektroteknik och elektronik

Chalmers infrastruktur