CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Polarimetric-interferometric boreal forest scattering model for BIOMASS end-to-end simulator

Maciej J. Soja (Institutionen för rymd- och geovetenskap, Radarfjärranalys) ; Lars M. H. Ulander (Institutionen för rymd- och geovetenskap, Radarfjärranalys)
Joint 2014 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014 and the 35th Canadian Symposium on Remote Sensing, CSRS 2014; Quebec Convention CentreQuebec City; Canada; 13 July 2014 through 18 July 2014 p. 1061-1064. (2014)
[Konferensbidrag, refereegranskat]

A polarimetric-interferometric forward model (FM) for extended covariance matrix modeling is presented. The FM has been designed to be used within the end-to-end simulator for BIOMASS, a new ESA satellite mission aiming at the global mapping of above-ground forest biomass with P-band synthetic aperture radar (SAR). The FM uses linear regression models for prediction of backscatter intensity and HH-VV correlation coefficient, and the random volume over ground (RVoG) model for the prediction of the interferometric correlation coefficients. For boreal forest, parameter values for these sub-models have been derived using polarimetric-interferometric SAR data acquired within the BioSAR 2007 campaign over the Swedish test site Remningstorp. The FM is evaluated qualitatively in a boreal forest scenario through a side-by-side comparison with BioSAR 2007 data. The general agreement is good, although there are regions with structures which cannot be reproduced by the model, probably due to insufficient forest description by the input parameters.

Nyckelord: BIOMASS, extended covariance matrix, forward model

Article number 6946611

Denna post skapades 2014-12-04. Senast ändrad 2016-05-24.
CPL Pubid: 207353


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Radarfjärranalys (2010-2017)


Annan geovetenskap och miljövetenskap
Elektroteknik och elektronik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Modelling and Retrieval of Forest Parameters from Synthetic Aperture Radar Data