CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Oxidation Mechanism in Zircaloy- 2—The Effect of SPP Size Distribution

Pia Tejland ; Hans-Olof Andrén (Institutionen för teknisk fysik, Materialens mikrostruktur ) ; Gustav Sundell (Institutionen för teknisk fysik, Materialens mikrostruktur ) ; Mattias Thuvander (Institutionen för teknisk fysik, Materialens mikrostruktur ) ; Bertil Josefsson ; Lars Hallstadius ; Maria Ivermark ; Mats Dahlbäck
ASTM Special Technical Publication: 17th International Symposium on Zirconium in the Nuclear Industry; Hyderabad, Andhra Pradesh; India; 3 February 2013 through 7 February 2013 (0066-0558). Vol. 1543 (2015), p. 373-403.
[Konferensbidrag, refereegranskat]

The metal/oxide interface region in Zircaloy-2 oxidized in autoclave was studied with transmission electron microscopy (TEM) and atom probe tomography. In addition to waviness on the micrometer scale the metal/oxide interface was found to have irregularities on a finer scale, and metal islands were found especially at metal hills (delayed parts of the oxidation front). The thickness of the sub-oxide layer varies considerably along the interface in the same sample, from 100 to virtually 0 nm. The sub-oxide composition may vary on a very fine scale (down to 5nm), and it can sometimes be a mixture of sub-oxides with different oxygen content. The metal matrix in contact with the sub-oxide is saturated with up to 32 at. % oxygen, and the oxygen diffusion profile in the metal is in approximate agreement with literature data for pure Zr. However, the diffusion length appears to be somewhat larger at interface metal hills than under valleys, probably for both geometrical and stress state reasons. Hydride precipitates, hardly visible in conventional TEM, give a good image contrast when employing high angle annular dark field imaging. A model for the oxidation process is presented, where the creep deformation of the metal close to the interface and the formation of lateral cracks in the oxide are of highest importance. The effect of second phase particle (SPP) size is suggested to be twofold: Small and numerous SPPs give a stronger metal and therefore higher stress in the oxide. Small SPPs also nucleate many more lateral cracks in the oxide, which gives a weaker oxide. Together this leads to formation of large cracks associated with transition in the oxidation rate at an earlier time than for a material with larger and fewer SPPs, and thereby a higher oxidation rate.

Nyckelord: Zircaloy-2, oxidation, SPP, TEM, APT

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-12-02. Senast ändrad 2016-04-06.
CPL Pubid: 207140


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Materialens mikrostruktur (2012-2015)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Atomic Scale Degradation of Zirconium Alloys for Nuclear Applications