CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A new approach to quantitative propagation of chaos for drift, diffusion and jump processes

S. Mischler ; C. Mouhot ; Bernt Wennberg (Institutionen för matematiska vetenskaper)
Probability Theory and Related Fields (0178-8051). Vol. 161 (2015), 1-2, p. 1-59.
[Artikel, refereegranskad vetenskaplig]

This paper is devoted the study of the mean field limit for many-particle systems undergoing jump, drift or diffusion processes, as well as combinations of them. The main results are quantitative estimates on the decay of fluctuations around the deterministic limit and of correlations between particles, as the number of particles goes to infinity. To this end we introduce a general functional framework which reduces this question to the one of proving a purely functional estimate on some abstract generator operators (consistency estimate) together with fine stability estimates on the flow of the limiting nonlinear equation (stability estimates). Then we apply this method to a Boltzmann collision jump process (for Maxwell molecules), to a McKean-Vlasov drift-diffusion process and to an inelastic Boltzmann collision jump process with (stochastic) thermal bath. To our knowledge, our approach yields the first such quantitative results for a combination of jump and diffusion processes. © 2013 Springer-Verlag Berlin Heidelberg.

Nyckelord: Boltzmann equation , Drift-diffusion , Fluctuations , Granular gas , Inelastic collision , McKean-Vlasov equation , Mean field limit , Quantitative



Denna post skapades 2014-12-02. Senast ändrad 2015-03-13.
CPL Pubid: 207123

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematisk analys
Sannolikhetsteori och statistik

Chalmers infrastruktur