CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry

Bo Berndtsson (Institutionen för matematiska vetenskaper, matematik)
Inventiones Mathematicae (0020-9910). Vol. 200 (2015), 1, p. 149-200.
[Artikel, refereegranskad vetenskaplig]

For ϕ a metric on the anticanonical bundle, −KX , of a Fano manifold X we consider the volume of X ∫Xe−ϕ. In earlier papers we have proved that the logarithm of the volume is concave along geodesics in the space of positively curved metrics on −KX . Our main result here is that the concavity is strict unless the geodesic comes from the flow of a holomorphic vector field on X , even with very low regularity assumptions on the geodesic. As a consequence we get a simplified proof of the Bando–Mabuchi uniqueness theorem for Kähler–Einstein metrics. A generalization of this theorem to ‘twisted’ Kähler–Einstein metrics and some classes of manifolds that satisfy weaker hypotheses than being Fano is also given. We moreover discuss a generalization of the main result to other bundles than −KX , and finally use the same method to give a new proof of the theorem of Tian and Zhu on uniqueness of Kähler–Ricci solitons.

Denna post skapades 2014-12-02. Senast ändrad 2016-09-14.
CPL Pubid: 207061


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur