CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity

Stig Larsson (Institutionen för matematiska vetenskaper, matematik) ; Milena Racheva ; Fardin Saedpanah
Computer Methods in Applied Mechanics and Engineering ( 0045-7825). Vol. 283 (2015), p. 196-209.
[Artikel, refereegranskad vetenskaplig]

An integro-differential equation, modeling dynamic fractional order viscoelasticity, with a Mittag-Leffler type convolution kernel is considered. A discontinuous Galerkin method, based on piecewise constant polynomials, is formulated for temporal semidiscretization of the problem. Stability estimates of the discrete problem are proved, that are used to prove optimal order a priori error estimates. The theory is illustrated by a numerical example.

Nyckelord: Integro-differential equation; Fractional order viscoelasticity; Discontinuous Galerkin method; Weakly singular kernel; Stability; A priori estimate



Denna post skapades 2014-11-25. Senast ändrad 2015-01-07.
CPL Pubid: 206593

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Numerisk analys

Chalmers infrastruktur