CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Macroscopic Layers of Chiral Plasmonic Nanoparticle Oligomers from Colloidal Lithography

Robin Ogier (Institutionen för teknisk fysik, Bionanofotonik) ; Yurui Fang (Institutionen för teknisk fysik, Bionanofotonik) ; Mikael Svedendahl (Institutionen för teknisk fysik, Bionanofotonik) ; Peter Johansson (Institutionen för teknisk fysik, Bionanofotonik) ; Mikael Käll (Institutionen för teknisk fysik, Bionanofotonik)
Acs Photonics (2330-4022). Vol. 1 (2014), 10, p. 1074-1081.
[Artikel, refereegranskad vetenskaplig]

Optical near-field coupling between closely spaced plasmonic metal nanoparticles is important to a range of nanophotonic applications of high contemporary interest, including surface-enhanced molecular spectroscopy, nanooptical sensing, and various novel light-harvesting concepts. Here we report on monolayers of chiral heterotrimers and heterotetramers composed of closely spaced silver and/or gold nanodisks of different heights fabricated through facile hole-mask colloidal lithography. These quasi-three-dimensional oligomers are interesting for applications because they exhibit "hot" gaps and crevices of nanometric dimensions, a pronounced circular dichroism, and optical chirality in the visible to near-infrared wavelength range, and they can be produced in large ensembles (>109) of identical orientation. We analyze the optical properties of the samples based on simulation results and find that the circular dichroism is due to strong near-field coupling and intricate phase retardation effects originating in the three-dimensional character of the individual oligomers.

Nyckelord: plasmonics, optical chirality, circular dichroism, hole-mask colloidal lithography, oligomers, numerical simulation



Denna post skapades 2014-11-18. Senast ändrad 2017-10-03.
CPL Pubid: 205944

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)

Ämnesområden

Nanoteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Plasmonics with a Twist: from Single Particles to Metasurfaces