CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Diffusion-induced dissipation and mode coupling in nanomechanical resonators

Christin Edblom (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Andreas Isacsson (Institutionen för teknisk fysik, Kondenserade materiens teori)
Physical Review B (1098-0121). Vol. 90 (2014), 15, p. Art. no. 155425.
[Artikel, refereegranskad vetenskaplig]

We study a system consisting of a particle adsorbed on a carbon nanotube resonator. The particle is allowed to diffuse along the resonator, in order to enable study of, e.g., room-temperature mass sensing devices. The system is initialized in a state where only the fundamental vibration mode is excited, and the ring-down of the system is studied by numerically and analytically solving the stochastic equations of motion. We find two mechanisms of dissipation, induced by the diffusing adsorbate. First, short-time correlations between particle and resonator motions means that the net effect of the former on the latter does not average out, but instead causes nonexponential dissipation of vibrational energy. For vibrational amplitudes that are much larger than the thermal energy this dissipation is linear; for small amplitudes the decay takes the same form as that of a nonlinearly damped oscillator. Second, the particle diffusion mediates a coupling between vibration modes that opens a new dissipation channel by enabling energy transfer from the fundamental mode to the excited modes, which rapidly reach thermal equilibrium.

Denna post skapades 2014-11-18. Senast ändrad 2015-02-11.
CPL Pubid: 205935


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens teori (1900-2015)


Teknisk fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Diffusion-Induced Nonlinear Dynamics in Carbon Nanomechanical Resonators

Relaxation and Resonance in Brownian Motion-Coupled Resonators