CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Quasi-isotropic Surface Plasmon Polariton Generation through Near-Field Coupling to a Penrose Pattern of Silver Nanoparticles

Ruggero Verre (Institutionen för teknisk fysik, Bionanofotonik) ; Tomasz Antosiewicz (Institutionen för teknisk fysik, Bionanofotonik) ; Mikael Svedendahl (Institutionen för teknisk fysik, Bionanofotonik) ; Kristof Lodewijks (Institutionen för teknisk fysik, Bionanofotonik) ; Timur Shegai (Institutionen för teknisk fysik, Bionanofotonik) ; Mikael Käll (Institutionen för teknisk fysik, Bionanofotonik)
ACS NANO (1936-0851). Vol. 8 (2014), 9, p. 9286-9294.
[Artikel, refereegranskad vetenskaplig]

Quasicrystals are structures that possess long-range order without being periodic. We investigate the unique characteristics of a photonic quasicrystal that consists of plasmonic Ag nanodisks arranged in a Penrose pattern. The quasicrystal scatters light in a complex but spectacular diffraction pattern that can be directly imaged in the back focal plane of an optical microscope, allowing us to assess the excitation efficiency of the various diffraction modes. Furthermore, surface plasmon polaritons can be launched almost isotropically through near-field grating coupling when the quasicrystal is positioned close to a homogeneous silver surface. We characterize the dispersion relation of the different excited plasmon modes by reflection measurements and simulations. It is demonstrated that the quasicrystal in-coupling efficiency is strongly enhanced compared to a nanopartide array with the same particle density but only short-range lateral order. We envision that the system can be useful for a number of advanced light harvesting and optoelectronic applications.

Nyckelord: aperiodic arrays, light-scattering, solar-cells, crystals, antenna, emission, order, lithography, enhancement, resonances



Denna post skapades 2014-11-14. Senast ändrad 2015-12-17.
CPL Pubid: 205785

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)

Ämnesområden

Nanoteknik

Chalmers infrastruktur