### Skapa referens, olika format (klipp och klistra)

**Harvard**

Johannesson, P. och Rychlik, I. (2014) * Laplace models for describing road profiles*.

** BibTeX **

@conference{

Johannesson2014,

author={Johannesson, Pär and Rychlik, Igor},

title={ Laplace models for describing road profiles},

booktitle={Proceedings of the 3rd International Commercial Vehicle Technology Symposium (CVT 2014) In Berns, K., Schneider, C., Dressler, K., Jörg, B., Kalmar, R., and Zolynski, G. (Eds.),, Shaker Verlag},

isbn={978-38-44-02573-6},

pages={99-108},

abstract={Gaussian models are frequently used for modelling environmental
loads, e.g. sea elevation, wind loads and road profiles. However, the Gaussian
model is often only valid for short sections of the load. Here we will study road
profiles, which is the longitudinal road elevation along a road track. The profile
for short sections of roads, say 100 m, is well modelled by a Gaussian process,
whereas longer sections of roads, say 10 km, typically contain shorter sections
with high irregularity. The variability between sections is higher than what can be
explained by the stationary Gaussian model. This phenomenon can be captured
by a Laplace process, which can be seen as a Gaussian process with randomly
varying variance. Laplace models for both a single track and for two parallel
tracks will be treated. Further, an approximation of the expected damage can be
computed from the parameters of the Laplace process. We will give examples of
modelling road profiles using Laplace models. Especially, it will be demonstrated
how to reconstruct a road profile based on sparse road roughness measurements,
such as a sequence of IRI (International Roughness Index) for 100 metre road
sections.},

year={2014},

}

** RefWorks **

RT Conference Proceedings

SR Print

ID 205558

A1 Johannesson, Pär

A1 Rychlik, Igor

T1 Laplace models for describing road profiles

YR 2014

T2 Proceedings of the 3rd International Commercial Vehicle Technology Symposium (CVT 2014) In Berns, K., Schneider, C., Dressler, K., Jörg, B., Kalmar, R., and Zolynski, G. (Eds.),, Shaker Verlag

SN 978-38-44-02573-6

SP 99

AB Gaussian models are frequently used for modelling environmental
loads, e.g. sea elevation, wind loads and road profiles. However, the Gaussian
model is often only valid for short sections of the load. Here we will study road
profiles, which is the longitudinal road elevation along a road track. The profile
for short sections of roads, say 100 m, is well modelled by a Gaussian process,
whereas longer sections of roads, say 10 km, typically contain shorter sections
with high irregularity. The variability between sections is higher than what can be
explained by the stationary Gaussian model. This phenomenon can be captured
by a Laplace process, which can be seen as a Gaussian process with randomly
varying variance. Laplace models for both a single track and for two parallel
tracks will be treated. Further, an approximation of the expected damage can be
computed from the parameters of the Laplace process. We will give examples of
modelling road profiles using Laplace models. Especially, it will be demonstrated
how to reconstruct a road profile based on sparse road roughness measurements,
such as a sequence of IRI (International Roughness Index) for 100 metre road
sections.

LA eng

OL 30