CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Hybrid Elastin-like Polypeptide-Polyethylene Glycol (ELP-PEG) Hydrogels with Improved Transparency and Independent Control of Matrix Mechanics and Cell Ligand Density

H. Y. Wang ; L. Cai ; Alexandra Paul (Institutionen för kemi- och bioteknik, Molekylär mikroskopi) ; Annika Enejder (Institutionen för kemi- och bioteknik, Molekylär mikroskopi) ; S. C. Heilshorn
Biomacromolecules (1525-7797). Vol. 15 (2014), 9, p. 3421-3428.
[Artikel, refereegranskad vetenskaplig]

Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP's lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics.

Nyckelord: TISSUE ENGINEERING APPLICATIONS, PROTEIN-BASED POLYMERS, CROSS-LINKING, DENSITY, ALGINATE HYDROGELS, STEM-CELLS, RGD, MICROENVIRONMENTS, ADHESION, CULTURE, BIOMATERIALS



Denna post skapades 2014-11-06. Senast ändrad 2016-04-28.
CPL Pubid: 205392

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Molekylär mikroskopi (2008-2014)

Ämnesområden

Biokemi och molekylärbiologi

Chalmers infrastruktur