CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Spatially homogeneous solutions of the Vlasov-Nordstrom-Fokker-Planck system

J. A. A. Felix ; Simone Calogero (Institutionen för matematiska vetenskaper, matematik) ; S. Pankavich
Journal of Differential Equations (0022-0396). Vol. 257 (2014), 10, p. 3700-3729.
[Artikel, refereegranskad vetenskaplig]

The Vlasov-Nordstrom-Fokker-Planck system describes the evolution of self-gravitating matter experiencing collisions with a fixed background of particles in the framework of a relativistic scalar theory of gravitation. We study the spatially-homogeneous system and prove global existence and uniqueness of solutions for the corresponding initial value problem in three momentum dimensions. Additionally, we study the long time asymptotic behavior of the system and prove that even in the absence of friction, solutions possess a non-trivial asymptotic profile. An exact formula for the long time limit of the particle density is derived in the ultra-relativistic case.

Nyckelord: Vlasov-Nordstrom, Fokker-Planck equation, Spatially homogeneous, Global existence, Ultra-, STEADY-STATES, EXISTENCE, BEHAVIOR, EQUATION, Mathematics



Denna post skapades 2014-11-06. Senast ändrad 2015-02-11.
CPL Pubid: 205347

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur