CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The Hegselmann-Krause dynamics on the circle converge

Peter Hegarty (Institutionen för matematiska vetenskaper, matematik) ; Anders Martinsson (Institutionen för matematiska vetenskaper) ; Edvin Wedin (Institutionen för matematiska vetenskaper)
Journal of difference equations and applications (1023-6198). p. 12. (2016)
[Artikel, refereegranskad vetenskaplig]

We consider the Hegselmann-Krause dynamics on a one-dimensional torus and provide the first proof of convergence of this system. The proof requires only fairly minor modifications of existing methods for proving convergence in Euclidean space.

Nyckelord: Hegselmann-Krause model, circle, convergence



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-10-27. Senast ändrad 2016-11-16.
CPL Pubid: 204917

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Informations- och kommunikationsteknik
Diskret matematik

Chalmers infrastruktur