CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Bridging the gaps in systems biology

Marija Cvijovic (Institutionen för matematiska vetenskaper, matematik) ; Joachim Almquist (Institutionen för kemi- och bioteknik, Systembiologi) ; Jonas Hagmar ; Stefan Hohmann ; H. M. Kaltenbach ; E. Klipp ; M. Krantz ; P. Mendes ; S. Nelander ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi) ; A. Pagnani ; N. Przulj ; A. Raue ; J. Stelling ; S. Stoma ; F. Tobin ; J. A. H. Wodke ; R. Zecchina ; Mats Jirstrand
Molecular Genetics and Genomics (1617-4615). Vol. 289 (2014), 5, p. 727-734.
[Artikel, refereegranskad vetenskaplig]

Systems biology aims at creating mathematical models, i.e., computational reconstructions of biological systems and processes that will result in a new level of understanding-the elucidation of the basic and presumably conserved "design" and "engineering" principles of biomolecular systems. Thus, systems biology will move biology from a phenomenological to a predictive science. Mathematical modeling of biological networks and processes has already greatly improved our understanding of many cellular processes. However, given the massive amount of qualitative and quantitative data currently produced and number of burning questions in health care and biotechnology needed to be solved is still in its early phases. The field requires novel approaches for abstraction, for modeling bioprocesses that follow different biochemical and biophysical rules, and for combining different modules into larger models that still allow realistic simulation with the computational power available today. We have identified and discussed currently most prominent problems in systems biology: (1) how to bridge different scales of modeling abstraction, (2) how to bridge the gap between topological and mechanistic modeling, and (3) how to bridge the wet and dry laboratory gap. The future success of systems biology largely depends on bridging the recognized gaps.

Nyckelord: Systems biology, Modeling, Sensitivity analysis, Model merging, Model standards

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-10-24. Senast ändrad 2017-07-03.
CPL Pubid: 204846


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)
Institutionen för kemi och molekylärbiologi (GU)


Bioinformatik och systembiologi

Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

Tackling the future challenges in systems biology (FUTURESYSBIO) (EC/FP7/223137)