### Skapa referens, olika format (klipp och klistra)

**Harvard**

Zhang, Q., Jin, S., Wong, K., Zhu, H. och Matthaiou, M. (2014) *Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means*.

** BibTeX **

@article{

Zhang2014,

author={Zhang, Q. and Jin, S. and Wong, K. K. and Zhu, H. B. and Matthaiou, Michail},

title={Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means},

journal={Ieee Journal of Selected Topics in Signal Processing},

issn={1932-4553},

volume={8},

issue={5},

pages={966-981},

abstract={This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean K-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas,, grows large, while the transmit power of each user can be scaled down proportionally to. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean K-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1 root M. In addition, we show that with an increasing Ricean K-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.},

year={2014},

keywords={Massive MIMO, Ricean fading channels, uplink rates, MULTIUSER MIMO, CAPACITY, ANTENNAS, ARCHITECTURE, FEEDBACK },

}

** RefWorks **

RT Journal Article

SR Electronic

ID 204822

A1 Zhang, Q.

A1 Jin, S.

A1 Wong, K. K.

A1 Zhu, H. B.

A1 Matthaiou, Michail

T1 Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means

YR 2014

JF Ieee Journal of Selected Topics in Signal Processing

SN 1932-4553

VO 8

IS 5

SP 966

OP 981

AB This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean K-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas,, grows large, while the transmit power of each user can be scaled down proportionally to. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean K-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1 root M. In addition, we show that with an increasing Ricean K-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.

LA eng

DO 10.1109/JSTSP.2014.2324534

LK http://dx.doi.org/10.1109/JSTSP.2014.2324534

OL 30