CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Integration of Hamiltonian systems with a structure preserving algorithm

Sadegh Rahrovani (Institutionen för tillämpad mekanik, Dynamik) ; Thomas Abrahamsson (Institutionen för tillämpad mekanik, Dynamik) ; Klas Modin (Institutionen för matematiska vetenskaper, matematik)
26th International Conference on Noise and Vibration Engineering, ISMA 2014, Including the 5th International Conference on Uncertainty in Structural Dynamics, USD 2014; Leuven; Belgium; 15 September 2014 through 17 September 2014 p. 2915-2929. (2014)
[Konferensbidrag, refereegranskat]

The disability of classical general-purpose integrators, such as the Runge-Kutta integrators, to exploit/preserve the structure of the analytical system and the failure of traditional structure-preserving geometric integrators, such as the leapfrog method, in treating highly oscillatory problems has been the main motivation for development of a recently proposed symplectic exponential integrator. Here, the capability of the method in robust simulation of Hamiltonian systems with complex dynamical behaviour, such as the elastic pendulum benchmark, is studied. The method exactly conserves the motion invariants, such as the angular momentum, while approximately conserves the Hamiltonian function. Furthermore, the method performance has been validated for systems with highly oscillatory behavior. These advantages are of particular interest for a variety of problems encountered in mechanical engineering applications, such as simulation of spacecraft structures, rotor blades, and similar systems.

Nyckelord: structure preserving integrators, Runge-Kutta, leap-frog, Hamiltonian, chaos, spring-pendulum

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-10-20. Senast ändrad 2017-06-28.
CPL Pubid: 204572


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik (1900-2017)
Institutionen för matematiska vetenskaper, matematik (2005-2016)


Numerisk analys
Teknisk mekanik

Chalmers infrastruktur