CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Charge decay on enamel wire surface

Anh Hoang (Institutionen för material- och tillverkningsteknik, Högspänningsteknik) ; Yuriy Serdyuk (Institutionen för material- och tillverkningsteknik, Högspänningsteknik) ; Stanislaw Gubanski (Institutionen för material- och tillverkningsteknik, Högspänningsteknik)
Proceedings of International Conference on High Voltage Engineering and Application 2014 (ICHVE 2014), ISBN 978-1-4799-6613-4 p. 1-4, paper A-4-3. (2014)
[Konferensbidrag, refereegranskat]

Partial discharge resistant enamel insulation filled with chromium oxide (Cr2O3) has been developed recently. In the paper, dynamics of surface charges on samples of the material is analyzed and is compared with that on conventional enamel. The experiments were conducted on test objects prepared as windings of enameled wires. Surface charging was implemented using dc corona from a needle electrode which was placed against the grounded winding. After charging, the potential induced by deposited charges was measured by non-contact technique. The surface charge density pattern was reconstructed utilizing Φ-matrix method. The decay of charges accumulated on insulation surfaces was recorded. It was found that the decay process was considerably faster for the filled enamel than for the conventional one, which may be one of the factors contributing to the improved partial discharge resistance of the former.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-09-30. Senast ändrad 2017-10-03.
CPL Pubid: 203517


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för material- och tillverkningsteknik, Högspänningsteknik (2005-2017)


Annan materialteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Charge transport in polymer-based insulating materials for high voltage applications: effect of single- and multi-layered structures