CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Localized orthogonal decomposition techniques for boundary value problems

Patrick Henning ; Axel Målqvist (Institutionen för matematiska vetenskaper, matematik)
SIAM Journal on Scientific Computing (1064-8275). Vol. 36 (2014), 4, p. A1609-A1634.
[Artikel, refereegranskad vetenskaplig]

In this paper we propose a local orthogonal decomposition method (LOD) for elliptic partial differential equations with inhomogeneous Dirichlet and Neumann boundary conditions. For this purpose, we present new boundary correctors which preserve the common convergence rates of the LOD, even if the boundary condition has a rapidly oscillating fine scale structure. We prove a corresponding a priori error estimate and present numerical experiments. We also demonstrate numerically that the method is reliable with respect to thin conductivity channels in the diffusion matrix. Accurate results are obtained without resolving these channels by the coarse grid and without using patches that contain the channels.

Denna post skapades 2014-09-30. Senast ändrad 2017-07-03.
CPL Pubid: 203498


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur