CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Two-level discretization techniques for ground state computations of Bose-Einstein condensates

Patrick Henning ; Axel Målqvist (Institutionen för matematiska vetenskaper, matematik) ; Daniel Peterseim
SIAM Journal on Numerical Analysis (0036-1429). Vol. 52 (2014), 4, p. 1525-1550.
[Artikel, refereegranskad vetenskaplig]

This work presents a new methodology for computing ground states of Bose--Einstein condensates based on finite element discretizations on two different scales of numerical resolution. In a preprocessing step, a low-dimensional (coarse) generalized finite element space is constructed. It is based on a local orthogonal decomposition of the solution space and exhibits high approximation properties. The nonlinear eigenvalue problem that characterizes the ground state is solved by some suitable iterative solver exclusively in this low-dimensional space, without significant loss of accuracy when compared with the solution of the full fine scale problem. The preprocessing step is independent of the types and numbers of bosons. A postprocessing step further improves the accuracy of the method. We present rigorous a priori error estimates that predict convergence rates $H^3$ for the ground state eigenfunction and $H^4$ for the corresponding eigenvalue without pre-asymptotic effects; $H$ being the coarse scale discretization parameter. Numerical experiments indicate that these high rates may still be pessimistic.

Nyckelord: eigenvalue, finite element, Gross-Pitaevskii equation, numerical upscaling, two-grid method, multiscale method

Denna post skapades 2014-09-30. Senast ändrad 2017-07-03.
CPL Pubid: 203497


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Tillämpad matematik

Chalmers infrastruktur