CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Localization of elliptic multiscale problems

Axel Målqvist (Institutionen för matematiska vetenskaper) ; Daniel Peterseim
Mathematics of Computation (0025-5718). Vol. 83 (2014), 290, p. 2583-2603.
[Artikel, refereegranskad vetenskaplig]

This paper constructs a local generalized finite element basis for elliptic problems with heterogeneous and highly varying coefficients. The basis functions are solutions of local problems on vertex patches. The error of the corresponding generalized finite element method decays exponentially with respect to the number of layers of elements in the patches. Hence, on a uniform mesh of size $ H$, patches of diameter $ H\log (1/H)$ are sufficient to preserve a linear rate of convergence in $ H$ without pre-asymptotic or resonance effects. The analysis does not rely on regularity of the solution or scale separation in the coefficient. This result motivates new and justifies old classes of variational multiscale methods. - See more at: http://www.ams.org/journals/mcom/2014-83-290/S0025-5718-2014-02868-8/#sthash.z2CCFXIg.dpuf

Nyckelord: Finite element method; a priori error estimate; convergence; multiscale method

Denna post skapades 2014-09-30. Senast ändrad 2015-04-23.
CPL Pubid: 203494


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)


Tillämpad matematik

Chalmers infrastruktur