CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Deformed Richardson-Gaudin model

Petr Kulish ; Alexander Stolin (Institutionen för matematiska vetenskaper, matematik) ; Henrik Johannesson
Journal of Physics, Conference Series (1742-6588). Vol. 532 (2014), p. 012012.
[Artikel, refereegranskad vetenskaplig]

The Richardson-Gaudin model describes strong pairing correlations of fermions confined to a finite chain. The integrability of the Hamiltonian allows the algebraic construction of its eigenstates. In this work we show that the quantum group theory provides a possibility to deform the Hamiltonian preserving integrability. More precisely, we use the so-called Jordanian r-matrix to deform the Hamiltonian of the Richardson-Gaudin model. In order to preserve its integrability, we need to insert a special nilpotent term into the auxiliary L-operator which generates integrals of motion of the system. Moreover, the quantum inverse scattering method enables us to construct the exact eigenstates of the deformed Hamiltonian. These states have a highly complex entanglement structure which require further investigation.

Denna post skapades 2014-09-17. Senast ändrad 2015-05-25.
CPL Pubid: 202896


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
Institutionen för fysik (GU) (GU)



Chalmers infrastruktur