CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Speed selection for traveling-wave solutions to the diffusion-reaction equation with cubic reaction term and Burgers nonlinear convection

Vladimir Sabelnikov ; Andrei Lipatnikov (Institutionen för tillämpad mekanik, Förbränning)
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics (1539-3755). Vol. 90 (2014), 3, p. Art. no. 033004.
[Artikel, refereegranskad vetenskaplig]

The problem of traveling wave (TW) speed selection for solutions to a generalized Murray-Burgers-KPP-Fisher parabolic equation with a strictly positive cubic reaction term is considered theoretically and the initial boundary value problem is numerically solved in order to support obtained analytical results. Depending on the magnitude of a parameter inherent in the reaction term (i) the term is either a concave function or a function with the inflection point and (ii) transition from pulled to pushed TW solution occurs due to interplay of two nonlinear terms; the reaction term and the Burgers convection term. Explicit pushed TW solutions are derived. It is shown that physically observable TW solutions, i.e., solutions obtained by solving the initial boundary value problem with a sufficiently steep initial condition, can be determined by seeking the TW solution characterized by the maximum decay rate at its leading edge. In the Appendix, the developed approach is applied to a non-linear diffusion-reaction equation that is widely used to model premixed turbulent combustion.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-09-15. Senast ändrad 2015-01-09.
CPL Pubid: 202786

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)