CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Performance bounds for multipath-assisted indoor localization on backscatter channels

E. Leitinger ; P. Meissner ; Markus Fröhle (Institutionen för signaler och system, Kommunikationssystem) ; K. Witrisal
IEEE National Radar Conference: 2014 IEEE Radar Conference, RadarCon 2014; Cincinnati, OH; United States; 19 May 2014 through 23 May 2014 (1097-5659). p. 70-75. (2014)
[Konferensbidrag, refereegranskat]

In this paper, we derive the Cramer-Rao lower bound (CRLB) on the position error for an RFID tag localization system exploiting multipath on backscatter radio channels. The backscatter channel is modeled with a hybrid deterministic/stochastic channel model. In this way, both the geometry of the deterministic multipath components (MPCs) and the interfering diffuse multipath are taken into account. Computational results show the influence of the room geometry on the bound and the impact of the diffuse multipath. Time reversal (TR) processing on the uplink channel is analyzed using the deterministic MPCs to overcome the degenerate nature of the backscatter channel. The CRLB shows the potential gain obtained from TR processing as well as its strong dependence on the geometry. Such TR processing has been proposed for TX waveform adaptation in the perception-action cycle of a cognitive radar. The results of this paper illustrate that it can indeed influence beneficially the measurement noise of the received signal, yielding control over the localization system.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-09-11. Senast ändrad 2014-10-29.
CPL Pubid: 202625

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem (1900-2017)

Ämnesområden

Informations- och kommunikationsteknik
Kommunikationssystem

Chalmers infrastruktur