CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Structured Sparse Approximation via Generalized Regularizers: With Application to V2V Channel Estimation

Sajjad Beygi ; Erik G. Ström (Institutionen för signaler och system, Kommunikationssystem) ; Urbashi Mitra
2014 IEEE Global Communications Conference, GLOBECOM 2014, Austin, United States, 8-12 December 2014 p. 3013-3018. (2014)
[Konferensbidrag, refereegranskat]

In this paper, we consider the estimation of a signal that has both group- and element-wise sparsity (joint sparsity); motivated by channel estimation in vehicle-to-vehicle channels. A general approach for the design of separable regularizing functions is proposed to adaptively induce sparsity in the estimation. A joint sparse signal estimation problem is formulated via these regularizers and its optimal solution is computed based on proximity operations. Our optimization results are quite general and they can be applied in the context of hierarchical sparsity models as well. The proposed recovery algorithm is a nested iterative method based on the alternating direction method of multipliers (ADMM). Due to regularizer separability, key operations can be performed in parallel. V2V channels are estimated by exploiting the joint sparsity (group/element-wise) exhibited in the delay-Doppler domain. Simulation results reveal that the proposed method can achieve as much as a 10 dB gain over previously examined methods.

Article number 7037267

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-09-04. Senast ändrad 2016-01-05.
CPL Pubid: 202317


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem (1900-2017)


Informations- och kommunikationsteknik
Hållbar utveckling

Chalmers infrastruktur