CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On Surrogate Methods in Propeller Optimisation

Florian Vesting (Institutionen för sjöfart och marin teknik, Marine Design) ; Rickard Bensow (Institutionen för sjöfart och marin teknik, Marine Design)
Ocean Engineering (0029-8018). Vol. 88 (2014), 0, p. 214-227.
[Artikel, refereegranskad vetenskaplig]

In marine propeller design, tools for propeller performance evaluation are often time consuming and automated optimisation of the blade geometry is thus not conducted. This paper discusses several response surface methods to replace the main part of the needed computations: the Kriging predictor, standard and with input improvement; the feed forward neural network; the cascade correlation neural network; and a mixed version. Optimisation assignments are performed by applying each of the surrogates to find the best solution in a multi-objective propeller design task including advanced constraints on cavitation. The final performance regarding geometry trends and degree of improvement are evaluated. Further, an approach is presented on a practical application of minimum computational effort by combining a response surface method to fill the design space and calculations in a local search method.

Nyckelord: Constraint optimisation, Multi-objective propeller design, Kriging predictor, Neural network, Cavitation, Response surface method

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-08-29. Senast ändrad 2014-10-23.
CPL Pubid: 202108


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för sjöfart och marin teknik, Marine Design (2012-2014)


Hållbar utveckling
Annan samhällsbyggnadsteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Marine Propeller Optimisation - Strategy and Algorithm Development