CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

An improved distributed dual newton-CG method for convex quadratic programming problems

A. Kozma ; Emil Klintberg (Institutionen för signaler och system, Reglerteknik) ; Sébastien Gros (Institutionen för signaler och system, Reglerteknik) ; M. Diehl
2014 American Control Conference, ACC 2014; Portland, OR; United States; 4 June 2014 through 6 June 2014 (0743-1619). p. 2324-2329. (2014)
[Konferensbidrag, refereegranskat]

This paper considers the problem of solving Programs (QP) arising in the context of distributed optimization and optimal control. A dual decomposition approach is used, where the QP subproblems are solved locally, while the constraints coupling the different subsystems in the time and space domains are enforced by performing a distributed non-smooth Newton iteration on the dual variables. The iterative linear algebra method Conjugate Gradient (CG) is used to compute the dual Newton step. In this context, it has been observed that the dual Hessian can be singular when a poor initial guess for the dual variables is used, hence leading to a failure of the linear algebra. This paper studies this effect and proposes a constraint relaxation strategy to address the problem. It is both formally and experimentally shown that the relaxation prevents the dual Hessian singularity. Moreover, numerical experiments suggest that the proposed relaxation improves significantly the convergence of the Distributed Dual Newton-CG.

Nyckelord: Hierarchical control , Large scale systems , Optimal control

Article number 6859083

Denna post skapades 2014-08-25. Senast ändrad 2014-10-30.
CPL Pubid: 201880


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Reglerteknik (2005-2017)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Structure exploiting optimization methods for model predictive control