CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap

E. J. Lindgren (Institutionen för fundamental fysik) ; Jimmy Rotureau (Institutionen för fundamental fysik) ; Christian Forssén (Institutionen för fundamental fysik) ; A. G. Volosniev ; N. T. Zinner
New Journal of Physics (1367-2630). Vol. 16 (2014),
[Artikel, refereegranskad vetenskaplig]

The nature of strongly interacting Fermi gases and magnetism is one of the most important and studied topics in condensed-matter physics. Still, there are many open questions. A central issue is under what circumstances strong short-range repulsive interactions are enough to drive magnetic correlations. Recent progress in the field of cold atomic gases allows one to address this question in very clean systems where both particle numbers, interactions and dimensionality can be tuned. Here we study fermionic few-body systems in a one dimensional harmonic trap using a new rapidly converging effective-interaction technique, plus a novel analytical approach. This allows us to calculate the properties of a single spin-down atom interacting with a number of spin-up particles, a case of much recent experimental interest. Our findings indicate that, in the strongly interacting limit, spin-up and spin-down particles want to separate in the trap, which we interpret as a microscopic precursor of one-dimensional ferromagnetism in imbalanced systems. Our predictions are directly addressable in current experiments on ultracold atomic few-body systems.

Nyckelord: cold atoms; low-dimensional systems; strong interactions



Denna post skapades 2014-08-22. Senast ändrad 2016-07-25.
CPL Pubid: 201810

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fundamental fysik (2005-2015)

Ämnesområden

Fysik

Chalmers infrastruktur

 


Projekt

Denna publikation är ett resultat av följande projekt:


Ab initio approach to nuclear structure and reactions (++) (ANSR) (EC/FP7/240603)