CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Finite element analysis of transient thermomechanical rolling contact using an efficient arbitrary Lagrangian-Eulerian description

Andreas Draganis (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Anders Ekberg (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
Computational Mechanics (0178-7675). Vol. 54 (2014), 2, p. 389-405.
[Artikel, refereegranskad vetenskaplig]

A theoretical and computational framework for the analysis of thermomechanically coupled transient rolling contact, based on an arbitrary Lagrangian-Eulerian (ALE) kinematical description, is developed. A finite element formulation featuring 2D cylinder-plate rolling contact is implemented. The implementation features penalty-type contact formulations for mechanical and thermal contact. It is noted that the ALE formulation allows for a simplified time description, a compact computational domain and localized mesh refinement. Numerical simulations considering stationary and transient rolling conditions are presented. Highlighted aspects include the influence of variations in thermal contact conductivity, rolling speed and external mechanical load on the contact interface heat flow. The model is shown to give predictions in qualitative agreement with results in the literature. For the velocity range studied, numerical issues such as spurious numerical dissipation/oscillations in the temperature field are noted to have a prominent influence. These phenomena are addressed using a Streamline-Upwind Petrov-Galerkin stabilization scheme together with a bubble function approach.

Denna post skapades 2014-08-19. Senast ändrad 2015-06-16.
CPL Pubid: 201602


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)



Chalmers infrastruktur