CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Imaging of buried objects from experimental backscattering time dependent measurements using a globally convergent inverse algorithm

Nguyen Trung Thành ; Larisa Beilina (Institutionen för matematiska vetenskaper, matematik) ; Michael V. Klibanov ; Michael A. Fiddy
SIAM Journal of Imaging Sciences (1936-4954). Vol. 8 (2015), 1, p. 757-786.
[Artikel, refereegranskad vetenskaplig]

We consider the problem of imaging of objects buried under the ground using experimental back-scattering time-dependent measurements generated by a single point source or one incident plane wave. In particular, we estimate dielectric constants of these objects using the globally convergent inverse algorithm of Beilina and Klibanov. Our algorithm is tested on experimental data collected using a microwave scattering facility at the University of North Carolina at Charlotte. There are two main challenges in working with this type of experimental data: (i) there is a huge misfit between these data and computationally simulated data, and (ii) the signals scattered from the targets may overlap with and be dominated by the reflection from the ground's surface. To overcome these two challenges, we propose new data preprocessing steps to make the experimental data look similar to the simulated data, as well as to remove the reflection from the ground's surface. Results of a total of 25 data sets of both nonblind and blind targets indicate good accuracy.

Nyckelord: buried object detection; coefficient identification problems; wave equation; globally convergent algorithm; experimental data; data preprocessing

Denna post skapades 2014-08-18. Senast ändrad 2016-06-27.
CPL Pubid: 201567


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur

Ingår i serie

Preprint - Department of Mathematical Sciences, Chalmers University of Technology and Göteborg University 2014:15