CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom

Anton Frisk Kockum (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik) ; Per Delsing (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Göran Johansson (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik)
Physical Review A - Atomic, Molecular, and Optical Physics (1050-2947). Vol. 90 (2014), 1, p. 013837.
[Artikel, refereegranskad vetenskaplig]

In traditional quantum optics, where the interaction between atoms and light at optical frequencies is studied, the atoms can be approximated as pointlike when compared to the wavelength of light. So far, this relation has also been true for artificial atoms made out of superconducting circuits or quantum dots, interacting with microwave radiation. However, recent and ongoing experiments using surface acoustic waves show that a single artificial atom can be coupled to a bosonic field at several points wavelengths apart. Here, we theoretically study this type of system. We find that the multiple coupling points give rise to a frequency dependence in the coupling strength between the atom and its environment and also in the Lamb shift of the atom. The frequency dependence is given by the discrete Fourier transform of the coupling-point coordinates and can therefore be designed. We discuss a number of possible applications for this phenomenon, including tunable coupling, single-atom lasing, and other effects that can be achieved by designing the relative coupling strengths of different transitions in a multilevel atom.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-08-12. Senast ändrad 2017-10-03.
CPL Pubid: 201273


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)