CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Origin of resolution enhancement by co-doping of scintillators: Insight from electronic structure calculations

D. Aberg ; B. Sadigh ; A. Schleife ; Paul Erhart (Institutionen för teknisk fysik, Material- och ytteori)
Applied Physics Letters (0003-6951). Vol. 104 (2014), 21,
[Artikel, refereegranskad vetenskaplig]

It was recently shown that the energy resolution of Ce-doped LaBr3 scintillator radiation detectors can be crucially improved by co-doping with Sr, Ca, or Ba. Here, we outline a mechanism for this enhancement on the basis of electronic structure calculations. We show that (i) Br vacancies are the primary electron traps during the initial stage of thermalization of hot carriers, prior to hole capture by Ce dopants; (ii) isolated Br vacancies are associated with deep levels; (iii) Sr doping increases the Br vacancy concentration by several orders of magnitude; (iv) Sr-La binds to V-Br resulting in a stable neutral complex; and (v) association with Sr causes the deep vacancy level to move toward the conduction band edge. The latter is essential for reducing the effective carrier density available for Auger quenching during thermalization of hot carriers. Subsequent de-trapping of electrons from Sr-La-V-Br complexes can activate Ce dopants that have previously captured a hole leading to luminescence. This mechanism implies an overall reduction of Auger quenching of free carriers, which is expected to improve the linearity of the photon light yield with respect to the energy of incident electron or photon.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-07-10. Senast ändrad 2015-06-23.
CPL Pubid: 200392

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Material- och ytteori (1900-2015)

Ämnesområden

Materialvetenskap
Materialfysik med ytfysik

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)