CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Modeling the Alkali Sulfation Chemistry of Biomass and Coal Co-firing in Oxy-fuel Atmospheres

Thomas Ekvall (Institutionen för energi och miljö, Energiteknik) ; Fredrik Normann (Institutionen för energi och miljö, Energiteknik) ; Klas Andersson (Institutionen för energi och miljö, Energiteknik) ; Filip Johnsson (Institutionen för energi och miljö, Energiteknik)
Energy & Fuels (0887-0624). Vol. 28 (2014), 5, p. 3486-3494.
[Artikel, refereegranskad vetenskaplig]

In the present modeling work, the gas-phase alkali sulfation process is investigated. The combined effects of oxyfuel combustion and co-combustion on the sulfation of alkali metals are examined and compared to the corresponding process under air-fired conditions. According to the modeling results, the degree of sulfation of gas-phase alkali metals is generally higher for oxy-fuel combustion than for air fuel combustion. The recirculation strategy, in terms of the flue gas composition in oxy-fuel combustion, is important for the sulfation of alkali metals. The increased contents of sulfur and water contribute significantly to the degree of sulfation of the alkali species. The modeling also reveals that an increased content of HCl, which is present during wet recirculation, has a negative effect on the sulfation. Thus, the degree of sulfation is lower in wet recirculation than in dry recirculation. The effects of other important parameters, such as the sulfur/potassium ratio, oxygen concentration, and temperature, are discussed.

Denna post skapades 2014-07-04. Senast ändrad 2014-09-02.
CPL Pubid: 200178


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för energi och miljö, Energiteknik (2005-2017)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

High-Temperature Corrosion Chemistry in Oxy-Fuel Combustion

Chemical Interactions between Potassium, Nitrogen, Sulfur and Carbon Monoxide in Suspension-Fired Systems