CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas

Svetlana Syrenova (Institutionen för teknisk fysik, Kemisk fysik) ; Carl Wadell (Institutionen för teknisk fysik, Kemisk fysik) ; Christoph Langhammer (Institutionen för teknisk fysik, Kemisk fysik)
Nano Letters (1530-6984). Vol. 14 (2014), 5, p. 2655-2663.
[Artikel, refereegranskad vetenskaplig]

Plasmonic nanoantennas create locally strongly enhanced electric fields in so-called hot spots. To place a relevant nanoobject with high accuracy in such a hot spot is crucial to fully capitalize on the potential of nanoantennas to control, detect, and enhance processes at the nanoscale. With state-of-the-art nanofabrication, in particular when several materials are to be used, small gaps between antenna elements are sought, and large surface areas are to be patterned, this is a grand challenge. Here we introduce self-aligned, bottom-up and self-assembly based Shrinking-Hole Colloidal Lithography, which provides (i) unique control of the size and position of subsequently deposited particles forming the nanoantenna itself, and (ii) allows delivery of nanoobjects consisting of a material of choice to the antenna hot spot, all in a single lithography step and, if desired, uniformly covering several square centimeters of surface. We illustrate the functionality of SHCL nanoantenna arrangements by (i) an optical hydrogen sensor exploiting the polarization dependent sensitivity of an Au-Pd nanoantenna ensemble; and (ii) single particle hydrogen sensing with an Au dimer nanoantenna with a small Pd nanoparticle in the hot spot.

Nyckelord: Hole-mask colloidal lithography, localized surface plasmon resonance, nanoantenna, single particle spectroscopy; palladium; hydrogen sensing

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-07-03. Senast ändrad 2015-02-11.
CPL Pubid: 200173


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kemisk fysik (1900-2015)


Nanovetenskap och nanoteknik
Kemisk fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Nanoplasmonic Spectroscopy of Single Nanoparticles Tracking Size and Shape Effects in Pd Hydride Formation

Plasmonic Nanostructures for Optical Absorption Engineering and Hydrogen Sensing