CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Parkinson's disease diagnosis using modular systems

Mona Noori Hosseini (Institutionen för signaler och system, Automation) ; Behrooz Makki (Institutionen för signaler och system, Kommunikationssystem)
Proceedings - 2013 Conference on Technologies and Applications of Artificial Intelligence, TAAI 2013 p. 79-83. (2013)
[Konferensbidrag, refereegranskat]

In this paper, we present two modular systems for Parkinson's disease diagnosis. Also, we compare the frequency and chaotic behavior of rest tremor velocity in the index finger of some parkinsonian and healthy subjects. The proposed methods consist of two different modules, first, high-dimensional features are compressed by local linear and nonlinear principal component analysis (PCA) techniques and then, the features are classified by neural classifiers. The results indicate the efficiency of modular systems in Parkinson's disease diagnosis.

Denna post skapades 2014-07-01.
CPL Pubid: 199999


Läs direkt!

Länk till annan sajt (kan kräva inloggning)