CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

hp-Cloud approximation of the Dirac eigenvalue problem: The way of stability

Hasan Almanasreh (Institutionen för matematiska vetenskaper)
Journal of Computational Physics (0021-9991). Vol. 272 (2014), p. 487-506.
[Artikel, refereegranskad vetenskaplig]

We apply hp-cloud method to the radial Dirac eigenvalue problem. The difficulty of occurrence of spurious eigenvalues among the genuine ones in the computation is resolved. The method of treatment is based on assuming hp-cloud Petrov-Galerkin scheme to construct the weak formulation of the problem which adds a consistent diffusivity to the variational formulation. The size of the artificially added diffusion term is controlled by a stability parameter (tau). The derivation of tau assumes the limit behavior of the eigenvalues at infinity. The parameter tau is applicable for generic basis functions. This is combined with the choice of appropriate intrinsic enrichments in the construction of the cloud shape functions. (C) 2014 Elsevier Inc. All rights reserved.

Nyckelord: Dirac operator, Spurious eigenvalues, Meshfree method, Clouds, Moving least-squares, Intrinsic, FREE GALERKIN METHOD, ESSENTIAL BOUNDARY-CONDITIONS, MESHLESS METHODS, FINITE-ELEMENT, SPURIOUS SOLUTIONS, MLPG METHOD, EQUATION, IMPLEMENTATION, INTEGRATION, Computer Science, Interdisciplinary Applications, Physics, Mathematical, COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS, PHYSICS, MATHEMATICAL


Fulltext available at: http://arxiv.org/abs/1205.3808v3



Denna post skapades 2014-06-26. Senast ändrad 2014-07-03.
CPL Pubid: 199687

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematik

Chalmers infrastruktur