CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction

Ibrahim El-Semman (Institutionen för kemi- och bioteknik) ; Fredrik H. Karlsson (Institutionen för kemi- och bioteknik, Systembiologi) ; Saeed Shoaie (Institutionen för kemi- och bioteknik, Systembiologi) ; Intawat Nookaew (Institutionen för kemi- och bioteknik, Systembiologi) ; T. H. Soliman ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi)
Bmc Systems Biology (1752-0509). Vol. 8 (2014), 41,
[Artikel, refereegranskad vetenskaplig]

Background: The gut microbiota plays an important role in human health and disease by acting as a metabolic organ. Metagenomic sequencing has shown how dysbiosis in the gut microbiota is associated with human metabolic diseases such as obesity and diabetes. Modeling may assist to gain insight into the metabolic implication of an altered microbiota. Fast and accurate reconstruction of metabolic models for members of the gut microbiota, as well as methods to simulate a community of microorganisms, are therefore needed. The Integrated Microbial Genomes (IMG) database contains functional annotation for nearly 4,650 bacterial genomes. This tremendous new genomic information adds new opportunities for systems biology to reconstruct accurate genome scale metabolic models (GEMs). Results: Here we assembled a reaction data set containing 2,340 reactions obtained from existing genome-scale metabolic models, where each reaction is assigned with KEGG Orthology. The reaction data set was then used to reconstruct two genome scale metabolic models for gut microorganisms available in the IMG database Bifidobacterium adolescentis L2-32, which produces acetate during fermentation, and Faecalibacterium prausnitzii A2-165, which consumes acetate and produces butyrate. F. prausnitzii is less abundant in patients with Crohn's disease and has been suggested to play an anti-inflammatory role in the gut ecosystem. The B. adolescentis model, iBif452, comprises 699 reactions and 611 unique metabolites. The F. prausnitzii model, iFap484, comprises 713 reactions and 621 unique metabolites. Each model was validated with in vivo data. We used OptCom and Flux Balance Analysis to simulate how both organisms interact. Conclusions: The consortium of iBif452 and iFap484 was applied to predict F. prausnitzii's demand for acetate and production of butyrate which plays an essential role in colonic homeostasis and cancer prevention. The assembled reaction set is a useful tool to generate bacterial draft models from KEGG Orthology.

Nyckelord: Bifidobacterium adolescentis L2-32, Faecalibacterium prausnitzii A2-165, Genome-scale metabolic model, Metabolic modeling of gut microbiota, GUT MICROBIOTA, SYSTEMS BIOLOGY, BACTEROIDES-THETAIOTAOMICRON, PROTEIN, FAMILIES, FLUX ANALYSIS, DATABASE, MODELS, BACTERIA, GROWTH, FERMENTATION, GNAN BA, 1994, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, V40, P800, VRIES W, 1968, JOURNAL OF BACTERIOLOGY, V96, P472



Denna post skapades 2014-06-13. Senast ändrad 2015-11-26.
CPL Pubid: 199176

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik (2005-2014)
Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)

Ämnesområden

Bioinformatik och systembiologi

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)