CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

Christian Häger (Institutionen för signaler och system, Kommunikationssystem) ; Alexandre Graell i Amat (Institutionen för signaler och system, Kommunikationssystem) ; Fredrik Brännström (Institutionen för signaler och system, Kommunikationssystem) ; Alex Alvarado ; Erik Agrell (Institutionen för signaler och system, Kommunikationssystem)
Optics Express (1094-4087). Vol. 22 (2014), 12, p. 14544-14558.
[Artikel, refereegranskad vetenskaplig]

Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.

Nyckelord: Bit mapper, mapping, interleaver, LDPC code, spatially coupled, optimization, higher-order modulations, BICM, coded modulation

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-06-12. Senast ändrad 2016-04-28.
CPL Pubid: 199123


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem (1900-2017)


Informations- och kommunikationsteknik

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)



Denna publikation är ett resultat av följande projekt:

Signal Recovery: Compressed Sensing meets Coding Theory (VR//2011-5961)