CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Measurements of a single pulse impinging jet. A CFD reference

Mirko Bovo (Institutionen för tillämpad mekanik, Förbränning) ; Borja M. Rojo Perez (Institutionen för tillämpad mekanik, Strömningslära) ; Maxim Golubev (Institutionen för tillämpad mekanik, Strömningslära)
EPJ Web of Conferences: EFM13 - Experimental Fluid Mechanics 2013 (2100-014X). Vol. 67 (2014),
[Konferensbidrag, refereegranskat]

This paper reports three sets of measurements of a single pulse impinging jet. The purpose is to serve as a reference for CFD validation. A gas injector generates a single pulse jet at Re ~90000. The jet impinges on a temperature controlled flat target at different angles (0̈, 30̈, 45̈ and 60̈). The jet velocity field is measured with PIV. The evolution of the jet velocity profile in time is reported at two different locations (suitable as CFD inlet conditions). At the same locations also turbulence quantities are reported. The impingement wall temperature is measured with fast responding thermocouples and infrared camera. These give high time and space resolution respectively. Results are reported in a format suitable for comparison with CFD simulations. The results show that the heat transfer effects are highest for the jet impinging normally on the target. Target inclination has remarkable effects on the jet penetration rate and repeatability. Even small target inclinations result creates a preferential direction for the jet flow and cause a shift in the position of the stagnation region.

Denna post skapades 2014-06-11. Senast ändrad 2014-12-01.
CPL Pubid: 199104


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Förbränning (2007-2017)
Institutionen för tillämpad mekanik, Strömningslära (2005-2017)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Aerothermal Experimental Investigation of LPT-OGVs