CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The Hegselmann-Krause dynamics for equally spaced agents

Peter Hegarty (Institutionen för matematiska vetenskaper) ; Edvin Wedin (Institutionen för matematiska vetenskaper)
Journal of difference equations and applications (1023-6198). p. 25. (2016)
[Artikel, refereegranskad vetenskaplig]

We consider the Hegselmann–Krause bounded confidence dynamics for n equally spaced opinions in R. We completely determine the evolution when the initial separation d equals the confidence bound r=1. Every fifth time step, three agents disconnect at either end before collapsing to a cluster. This continues until fewer than 6 agents remain in the middle, and these finally collapse to a cluster, if n is not a multiple of 6. The configuration thus freezes in time 5n6+O(1). We show that for values d≈0.81, the evolution is similarly periodic but with a freezing time of n+O(1), and conjecture that this is maximal for equidistant configurations. Finally, we consider the dynamics for arbitrary spacings d \in [0,1]. Based on a mix of rigorous analysis and simulations, we propose hypotheses concerning the regularity of the evolution for arbitrary d, and a limiting behaviour as d→0.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-06-03. Senast ändrad 2016-11-16.
CPL Pubid: 198801

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Informations- och kommunikationsteknik
Diskret matematik

Chalmers infrastruktur