CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The Hegselmann-Krause dynamics for equally spaced agents

Peter Hegarty (Institutionen för matematiska vetenskaper, matematik) ; Edvin Wedin (Institutionen för matematiska vetenskaper, matematik)
Journal of difference equations and applications (1023-6198). Vol. 22 (2016), 11, p. 1621-1645.
[Artikel, refereegranskad vetenskaplig]

We consider the Hegselmann–Krause bounded confidence dynamics for n equally spaced opinions in R. We completely determine the evolution when the initial separation d equals the confidence bound r=1. Every fifth time step, three agents disconnect at either end before collapsing to a cluster. This continues until fewer than 6 agents remain in the middle, and these finally collapse to a cluster, if n is not a multiple of 6. The configuration thus freezes in time 5n6+O(1). We show that for values d≈0.81, the evolution is similarly periodic but with a freezing time of n+O(1), and conjecture that this is maximal for equidistant configurations. Finally, we consider the dynamics for arbitrary spacings d \in [0,1]. Based on a mix of rigorous analysis and simulations, we propose hypotheses concerning the regularity of the evolution for arbitrary d, and a limiting behaviour as d→0.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-06-03. Senast ändrad 2017-07-03.
CPL Pubid: 198801


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Informations- och kommunikationsteknik
Diskret matematik

Chalmers infrastruktur