CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

Carl Zandén (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Nina Hellström Erkenstam ; Thomas Padel ; Julia Wittgenstein ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Hans-Georg Kuhn
Nanomedicine: Nanotechnology, Biology and Medicine (1549-9634). Vol. 10 (2014), 5, p. 949–958.
[Artikel, refereegranskad vetenskaplig]

The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography.

Nyckelord: Stem cell, Polyurethane, Scaffold, Surface modification



Denna post skapades 2014-06-02. Senast ändrad 2015-01-21.
CPL Pubid: 198777

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)
Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap och rehabilitering (2006-2016)

Ämnesområden

Neurovetenskap
Biomaterialvetenskap

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Functional Fiber Based Materials for Microsystem Applications