CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Magnetically induced structural anisotropy in binary colloidal gels and its effect on diffusion and pressure driven permeability

Christoffer Abrahamsson (Institutionen för kemi- och bioteknik, Teknisk ytkemi ; SuMo Biomaterials) ; Lars Nordstierna (Institutionen för kemi- och bioteknik, Teknisk ytkemi) ; Johan Bergenholtz ; Annika Altskär ; Magnus Nydén
Soft Matter (1744-683X). Vol. 10 (2014), 24, p. 4403-4412.
[Artikel, refereegranskad vetenskaplig]

We report on the synthesis, microstructure and mass transport properties of a colloidal hydrogel selfassembled from a mixture of colloidal silica and nontronite clay plates at different particle concentrations. The gel-structure had uniaxial long-range anisotropy caused by alignment of the clay particles in a strong external magnetic field. After gelation the colloidal silica covered the clay particle network, fixing the orientation of the clay plates. Comparing gels with a clay concentration between 0 and 0.7 vol%, the magnetically oriented gels had a maximum water permeability and self-diffusion coefficient at 0.3 and 0.7 vol% clay, respectively. Hence the specific clay concentration resulting in the highest liquid flux was pressure dependent. This study gives new insight into the effect of anisotropy, particle concentration and bound water on mass transport properties in nano/microporous materials. Such findings merit consideration when designing porous composite materials for use in for example fuel cell, chromatography and membrane technology.

Nyckelord: diffusion, gels, clays, silica, magnetic field, anisotropy, flow, permeability

Denna post skapades 2014-06-02. Senast ändrad 2016-03-21.
CPL Pubid: 198723


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Teknisk ytkemi (2005-2014)
SuMo Biomaterials
Institutionen för kemi och molekylärbiologi (GU)


Yt- och kolloidkemi

Chalmers infrastruktur