CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Invariant trilinear forms on spherical principal series of real rank one semisimple Lie groups

S. Ben Said ; K. Koufany ; Genkai Zhang (Institutionen för matematiska vetenskaper, matematik)
International Journal of Mathematics (0129-167X). Vol. 25 (2014), 3, p. artikel nr 1450017.
[Artikel, refereegranskad vetenskaplig]

Let G be a connected semisimple real-rank one Lie group with finite center. We consider intertwining operators on tensor products of spherical principal series representations of G. This allows us to construct an invariant trilinear form K. indexed by a complex multiparameter (v)under bar = (v1, v2, v3) and defined on the space of smooth functions on the product of three spheres in F-n, where F is either R, C, H, or O with n = 2. We then study the analytic continuation of the trilinear form with respect to (v1, v2, v3), where we locate the hyperplanes containing the poles. Using a result due to Johnson and Wallach on the so-called "partial intertwining operator", we obtain an expression for the generalized Bernstein-Reznikov integral K-(v) under bar (1 circle times 1 circle times 1) in terms of hypergeometric functions.

Nyckelord: Spherical principal series, intertwining operators, invariant trilinear forms, H-type groups, meromorphic continuation, generalized Bernstein-Reznikov integrals, HEISENBERG-TYPE-GROUPS, INTERTWINING-OPERATORS, REPRESENTATIONS

Denna post skapades 2014-05-27. Senast ändrad 2015-12-17.
CPL Pubid: 198640


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur