CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Two-filter Gaussian mixture smoothing with posterior pruning

Abu Sajana Rahmathullah (Institutionen för signaler och system, Signalbehandling) ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; Daniel Svensson (Institutionen för signaler och system, Signalbehandling)
17th International Conference on Information Fusion, FUSION 2014, Salamanca, Spain, 7-10 July 2014 p. Art. no. 6916249. (2014)
[Konferensbidrag, refereegranskat]

In this paper, we address the problem of smoothing on Gaussian mixture (GM) posterior densities using the two-filter smoothing (TFS) strategy. The structure of the likelihoods in the backward filter of the TFS is analysed in detail. These likelihoods look similar to GMs, but are not proper density functions in the state-space since they may have constant value in a subspace of the state space. We present how the traditional GM reduction techniques can be extended to this kind of GMs. We also propose a posterior-based pruning strategy, where the filtering density can be used to make further approximations of the likelihood in the backward filter. Compared to the forward–backward smoothing (FBS) method based on N-scan pruning approximations, the proposed algorithm is shown to perform better in terms of track loss, normalized estimation error squared (NEES), computational complexity and root mean squared error (RMSE).

Nyckelord: backward likelihood; data association; filtering; Gaussian mixtures; smoothing; two-filter smoothing

Denna post skapades 2014-05-27. Senast ändrad 2017-01-27.
CPL Pubid: 198614


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Practical methods for Gaussian mixture filtering and smoothing

Data association algorithms and metric design for trajectory estimation