CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Real-Time and Simultaneous Control of Artificial Limbs Based on Pattern Recognition Algorithms

Max Jair Ortiz-Catalan (Institutionen för signaler och system, Medicinska signaler och system) ; Bo Håkansson (Institutionen för signaler och system, Medicinska signaler och system) ; Rickard Branemark
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society (1558-0210). Vol. 22 (2014), 4, p. 756-764.
[Artikel, refereegranskad vetenskaplig]

The prediction of simultaneous limb motions is a highly desirable feature for the control of artificial limbs. In this work, we investigated different classification strategies for individual and simultaneous movements based on pattern recognition of myoelectric signals. Our results suggest that any classifier can be potentially employed in the prediction of simultaneous movements if arranged in a distributed topology. On the other hand, classifiers inherently capable of simultaneous predictions, such as the Multi-Layer Perceptron (MLP), were found to be more cost effective, as they can be successfully employed in their simplest form. In the prediction of individual movements, the One-Vs-One (OVO) topology was found to improve classification accuracy across different classifiers and it was therefore used to benchmark the benefits of simultaneous control. As opposed to previous work reporting only offline accuracy, the classification performance and the resulting controllability were evaluated in real-time using the Motion Test and Target Achievement Control (TAC) Test respectively. We propose a simultaneous classification strategy based on MLP that outperformed a top classifier for individual movements (LDA-OVO), thus improving the state-of-the-art classification approach. Furthermore, all the presented classification strategies and data collected in this study are freely available in BioPatRec, an open source platform for the development of advanced prosthetic control strategies.

Nyckelord: Accuracy, Pattern recognition, Prosthetics, Real-time systems,

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-05-19. Senast ändrad 2015-04-28.
CPL Pubid: 198268


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Medicinska signaler och system


Annan medicinteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Towards Natural Control of Artificial Limbs