CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Single-Cell Study of a Highly Effective Hog1 Inhibitor for in Situ Yeast Cell Manipulation

Charlotte Hamngren Blomqvist (Institutionen för fysik (GU) ; Institutionen för teknisk fysik, Eva Olsson Group ; SuMo Biomaterials) ; Peter Dinér ; Morten Grøtli ; Mattias Goksör ; Caroline B. Adiels
Micromachines (2072-666X). Vol. 5 (2014), 1, p. 81-96.
[Artikel, refereegranskad vetenskaplig]

We present a single cell study of a highly effective Hog1 inhibitor. For this application, we used sequential treatment of a Saccharomyces cerevisiae cell array, with the Hog1 inhibitor and osmotic stress. For this purpose, a four-inlet microfluidic chamber with controlled introduction of two different cell strains within the same experimental setting and a subsequent rapid switching between treatments was designed. Multiple cell strains within the same experiment is a unique feature which is necessary for determining the expected absent cellular response. The nuclear translocation of the cytosolic MAPK, Hog1, was monitored by fluorescence imaging of Hog1-GFP on a single-cell level. An optical tweezers setup was used for controlled cell capture and array formation. Nuclear Hog1-GFP localization was impaired for treated cells, providing evidence of a congenial microfluidic setup, where the control cells within the experiments validated its appropriateness. The chamber enables multiple treatments with incubation times in the order of seconds and the possibility to remove either of the treatments during measurement. This flexibility and the possibility to use internal control cells ensures it a valuable scientific tool for unraveling the HOG pathway, similar signal transduction pathways and other biological mechanisms where temporal resolution and real time imaging is a prerequisite.

Nyckelord: microfluidics, single-cell analysis, MAPK, inhibitor, optical trapping, cell-to-cell variability, system biology, Saccharomyces cerevisiae, HOG, optical tweezers

Denna post skapades 2014-05-06. Senast ändrad 2016-03-21.
CPL Pubid: 197614


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fysik (GU) (GU)
Institutionen för teknisk fysik, Eva Olsson Group (2012-2015)
SuMo Biomaterials
Institutionen för kemi och molekylärbiologi (GU)



Chalmers infrastruktur