CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects

Eduard Hryha (Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik) ; Lars Nyborg (Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik)
Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science (1073-5623). Vol. 45A (2014), 4, p. 1736-1747.
[Artikel, refereegranskad vetenskaplig]

The main obstacle for utilization of Cr and Mn as alloying elements in powder metallurgy is their high oxygen affinity leading to oxidation risk during powder manufacturing, handling, and especially during further consolidation. Despite the high purity of the commercially available Cr- and Mn-prealloyed iron powder grades, the risk of stable oxide formation during the sintering process remains. Thermodynamic and kinetic simulation of the oxide formation/transformation on the former powder surface during heating and sintering stages using thermodynamic modeling tools (Thermo-Calc and HSC Chemistry) was performed. Simulation is based on the results from the analysis of amount, morphology, and composition of the oxide phases inside the inter-particle necks in the specimens from interrupted sintering trials utilizing advanced analysis tools (HRSEM + EDX and XPS). The effect of the processing parameters, such as sintering atmosphere composition, temperature profile as well as graphite addition on the possible scenarios of oxide reduction/formation/transformation for Fe-Cr-Mn-C powder systems, was evaluated. Results indicate that oxide transformation occurs in accordance with the thermodynamic stability of oxides as follows: Fe2O3 -> FeO -> Fe2MnO4 -> Cr2FeO4 -> Cr2O3 -> MnCr2O4 -> MnO/MnSiO (x) -> SiO2. Spinel MnCr2O4 was identified as the most stable oxide phase at applied sintering conditions up to 1393 K (1120 A degrees C). Controlled conditions during the heating stage minimize the formation of stable oxide products and produce oxide-free sintered parts.


Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-05-05. Senast ändrad 2014-11-12.
CPL Pubid: 197560


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik (2005-2017)


Hållbar utveckling
Metallurgi och metalliska material

Chalmers infrastruktur