CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation

Larisa Beilina (Institutionen för matematiska vetenskaper, matematik) ; T. Thanh ; M. V. Klibanov ; M. A. Fiddy
Inverse Problems (0266-5611). Vol. 30 (2014), 2, p. artikel nr 025002.
[Artikel, refereegranskad vetenskaplig]

We consider the problem of the reconstruction of dielectrics from blind backscattered experimental data. The reconstruction is done from time domain data, as opposed to a more conventional case of frequency domain data. Experimental data were collected using a microwave scattering facility which was built at the University of North Carolina at Charlotte. This system sends electromagnetic pulses into the medium and collects the time-resolved backscattered data on a part of a plane. The spatially distributed dielectric constant epsilon(r)(x), x is an element of R-3 is the unknown coefficient of a wave-like PDE. This coefficient is reconstructed from those data in blind cases. To do this, a globally convergent numerical method is used.

Nyckelord: coefficient inverse problem (CIP), finite element method, globally convergent numerical method for, OLT RH, 1978, GEOPHYSICS, V43, P23

Denna post skapades 2014-04-30. Senast ändrad 2016-06-27.
CPL Pubid: 197366


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur