CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

on-Demand System Reliability: The DeSyRe project

Ioannis Sourdis (Institutionen för data- och informationsteknik (Chalmers))
13th International Conference on Embedded Computer Systems - Architectures, Modeling and Simulation (IC-SAMOS), Jul 15-18 2013 p. 246-246. (2013)
[Konferensbidrag, refereegranskat]

The DeSyRe project builds on-demand adaptive, reliable Systems-on-Chips. In response to the current semiconductor technology trends that make chips becoming less reliable, DeSyRe describes a new generation of by design reliable systems, at a reduced power and performance cost. This is achieved through the following main contributions. DeSyRe defines a fault-tolerant system architecture built out of unreliable components, rather than aiming at totally fault-free, and hence more costly chips. In addition, DeSyRe systems are on-demand adaptive to various types and densities of faults, as well as to other system constraints and application requirements. For leveraging on-demand adaptation/customization and reliability at reduced cost, a new dynamically reconfigurable substrate is proposed and combined with runtime system software support. The above define a generic and repeatable design framework for a large variety of SoCs, which within the project - is applied to two medical SoCs with high reliability constraints and diverse performance and power requirements. In this talk, an overview of the DeSyRe and our current research findings are described.



Denna post skapades 2014-04-17. Senast ändrad 2016-09-14.
CPL Pubid: 196877

 

Institutioner (Chalmers)

Institutionen för data- och informationsteknik (Chalmers)

Ämnesområden

Data- och informationsvetenskap

Chalmers infrastruktur