### Skapa referens, olika format (klipp och klistra)

**Harvard**

Moradnia, P., Chernoray, V. och Nilsson, H. (2014) *Experimental assessment of a fully predictive CFD approach, for flow of cooling air in an electric generator*.

** BibTeX **

@article{

Moradnia2014,

author={Moradnia, Pirooz and Chernoray, Valery and Nilsson, Håkan},

title={Experimental assessment of a fully predictive CFD approach, for flow of cooling air in an electric generator},

journal={Applied Energy},

issn={0306-2619},

volume={124},

pages={223-230},

abstract={A fully predictive computational fluid dynamics approach is assessed for the flow of cooling air in an axially cooled electric generator. The flow is driven solely by the rotation of the rotor, as in the real application. A part of the space outside the generator is included in the computational domain to allow for the flow of air into and out of the machine. This yields a flow prediction that is determined without the input of any experimental data. Two different choices of ‘surrounding’ outer boundary conditions are studied, and the mesh sensitivity is discussed.
The numerically predicted flow is compared with experimental data. Flow visualizations are performed at the inlet. The inlet velocity distribution is determined using 5-hole and total pressure probes. The outlet velocity distribution is determined using a total pressure rake.
It is found that the numerical approach qualitatively, and to a large extent quantitatively, predicts the same velocity distributions as in the experiment. The numerically predicted flow rates are however lower than that estimated from the experimental data. The differences are considered small, given the many uncertainties in both the numerical and experimental studies, and that they are performed completely independently.},

year={2014},

keywords={CFD; Flow prediction; Experiment; Electric generator; Low-Re turbulence model; Cooling},

}

** RefWorks **

RT Journal Article

SR Electronic

ID 196084

A1 Moradnia, Pirooz

A1 Chernoray, Valery

A1 Nilsson, Håkan

T1 Experimental assessment of a fully predictive CFD approach, for flow of cooling air in an electric generator

YR 2014

JF Applied Energy

SN 0306-2619

VO 124

SP 223

OP 230

AB A fully predictive computational fluid dynamics approach is assessed for the flow of cooling air in an axially cooled electric generator. The flow is driven solely by the rotation of the rotor, as in the real application. A part of the space outside the generator is included in the computational domain to allow for the flow of air into and out of the machine. This yields a flow prediction that is determined without the input of any experimental data. Two different choices of ‘surrounding’ outer boundary conditions are studied, and the mesh sensitivity is discussed.
The numerically predicted flow is compared with experimental data. Flow visualizations are performed at the inlet. The inlet velocity distribution is determined using 5-hole and total pressure probes. The outlet velocity distribution is determined using a total pressure rake.
It is found that the numerical approach qualitatively, and to a large extent quantitatively, predicts the same velocity distributions as in the experiment. The numerically predicted flow rates are however lower than that estimated from the experimental data. The differences are considered small, given the many uncertainties in both the numerical and experimental studies, and that they are performed completely independently.

LA eng

DO 10.1016/j.apenergy.2014.02.064

LK http://dx.doi.org/10.1016/j.apenergy.2014.02.064

OL 30